Generalized Network Autoregressive Processes and the GNAR Package
نویسندگان
چکیده
منابع مشابه
Stationary and Integrated Autoregressive Neural Network Processes
We consider autoregressive neural network (AR-NN) processes driven by additive noise and demonstrate that the characteristic roots of the shortcuts-the standard conditions from linear time-series analysis-determine the stochastic behavior of the overall AR-NN process. If all the characteristic roots are outside the unit circle, then the process is ergodic and stationary. If at least one charact...
متن کاملOn the existence of Hilbert valued periodically correlated autoregressive processes
In this paper we provide sufficient condition for existence of a unique Hilbert valued ($mathbb{H}$-valued) periodically correlated solution to the first order autoregressive model $X_{n}=rho _{n}X_{n-1}+Z_{n}$, for $nin mathbb{Z}$, and formulate the existing solution and its autocovariance operator. Also we specially investigate equivalent condition for the coordinate process...
متن کاملSome Autoregressive Moving Average Processes with Generalized Poisson Marginal Distributions
Abstrac t . Some simple models are introduced which may be used for modelling or generating sequences of dependent discrete random variables with generalized Poisson marginal distribution. Our approach for building these models is similar to that of the Poisson ARMA processes considered by Al-Osh and Alzaid (1987, J. Time Ser. Anal., 8, 261-275; 1988, Statist. Hefte, 29, 281-300) and McKenzie (...
متن کاملStationarity and Stability of Autoregressive Neural Network Processes
We analyze the asymptotic behavior of autoregressive neural network (AR-NN) processes using techniques from Markov chains and non-linear time series analysis. It is shown that standard AR-NNs without shortcut connections are asymptotically stationary. If linear shortcut connections are allowed, only the shortcut weights determine whether the overall system is stationary, hence standard conditio...
متن کاملGeneralized Autoregressive Conditional Heteroskedasticity
A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametric models are derived. Maximum likelihood estimation and testing are also considered. Finally an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2020
ISSN: 1548-7660
DOI: 10.18637/jss.v096.i05